مذاكرة الفصل الأول في مادة الرياضيات

الاسم :.....

الدرجة: 600

 $-\infty$

f'(x)

f(x)

(D

 $-\infty \mid\mid -\infty$

 $+\infty$

0

للصف الثالث الثانوي العلمي (2018–2019)

أُولاً : أجيبي عن الأسئلة الأربعة الآتية: (40 درجة لكل سؤال)

: جدول تغیّراته هو الآتي $\mathbb{R}\setminus\{2\}$ خطّه البیاني f : السؤال الأول المحرّف علی الآتي السؤال الأول المحرّف علی الآتي السؤال الأول المحرّف علی الآتي السؤال الأول المحرّف علی المحرّف علی

$\mathbb{R}\setminus\{2\}$ مختلفین علی	$\cdot \int_{a}^{\infty} f(x)$		اً ب	. س.	Ω
$\mathbb{R}\setminus\{2\}$ محتلفین علی	حلان $f(x)$	للمعادله () =	ر ان	ىىنى	v

+	وجدي نهايات التابع f عند أطراف مجموعة تعريفه 2
∞ / 1	
	واستنتجي معادلة كل مستقيم مقارب أفقى أو شاقولي .

. عللي إجابتك C مقارب مائل C عللي إجابتك .

 $z^2=5-12i$ المعادلة $\mathbb C$ حلّى في $\mathbb C$ المعادلة الثنائي :

هل يوجد للخط
$$C$$
 مقارب مائل ؟ عللي إجابتك . C هل يوجد للخط C مقارب مائل ؟ عللي إجابتك . C

. B(2,-1,2) و A(4,3,-2) التكن النقطتان ($O;\vec{i}\,,\vec{j}\,,\vec{k}\,)$ و ($O;\vec{i}\,,\vec{j}\,,\vec{k}\,$) و السؤال الثالث : في معلم متجانس

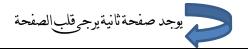
- $oldsymbol{0}$ أوجدى نقطةً من محور التراتيب متساوية البعد عن النقطتين A و
 - اكتبى معادلةً للكرة التي قطرها [AB]

 $\ln \sqrt{2x-3} = \ln(6-x) - \frac{1}{2} \ln x$: حل المعادلة الآتية على حل المعادلة الآتية

ثانياً : حلي التمارين الأربعة الآتية : (60 درجة لكل سؤال)

 $f(x) = \frac{x^2 + x + 2\sin 2x}{x}$ وفق \mathbb{R}^* وفق التمرين الأول ليكن التابع المعرّف على

- $\lim_{x\to 0} f(x)$ Lewis $\mathbf{0}$
- ابحثی عن مستقیم مقارب مائل Δ للخط البیانی للتابع f فی جوار $\infty+$.


التمرين الثاني :

. $z_2=-1+i$ و $z_1=-2(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$ و ليكن العددان العقديان:

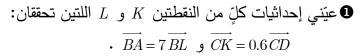
- اكتبى $z_1 \cdot z_2$ و $z_1 \cdot z_3$ بالشكل الجبري.
- . اکتبي z_1 و z_2 و z_2 بالشکل الأسی
 - . $\sin \frac{\pi}{10}$ و $\cos \frac{\pi}{10}$

 $f(x) = \sqrt{x^2 - 2x + 5}$: وفق \mathbb{R} وفق النياني للتابع للتابع للتابع الخط البياني للتابع الخط البياني المعرّف على الخط البياني البياني

- $\lim_{x \to +\infty} f(x)$ احسبي **1**
- . (متممةً إلى مربع كامل $x^2 2x + 5$ اكتبى ثلاثي الحدود $x^2 2x + 5$ بالصيغة القانونية
- . استنتجي وجود مقارب مائل للخط البياني C للتابع f في جوار $+\infty$ اكتبي معادلته وضع وضع $+\infty$ بالنسبة إليه $+\infty$

التمرين الرابع :

 $P(z) = z^3 - 3z^2 + 3z + 7$ نتأمّل كثير الحدود


- . P(-1) احسبی **0**
- $P(z)=(z+1)(z^2+az+b)$ و و اذا علمت أن a و العددين الحقيقيين و a
 - . P(z)=0 ملّي في $\mathbb C$ المعادلة $\mathbf G$

ثالثًا: حلي كلاً من المسألتين الآتيتين : (100 درجة لكل مسألة)

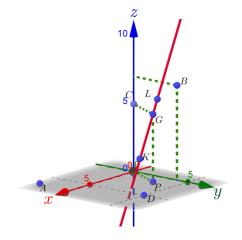
المسألة الأولى:

: النقاط ، لدينا النقاط ، في معلمٍ متجانس ($O; ec{i}\,, ec{j}\,, ec{k}\,)$

 $C(\frac{3}{2},3,5)$ و D(5,5,0) و C(0,0,5) و B(0,4,7)

. ثمّ أثبتي أنّ النقاط K و G و L تقع على استقامةٍ واحدة

. علي إجابتك \overrightarrow{AG} و \overrightarrow{AC} و \overrightarrow{AC} علي إجابتك .


. لا . و مستو واحد أم لا . و A و A و المستو واحد أم لا .

المسألة الثانية :

. C_f وفق $f(x)=\ln\left(\frac{x-2}{x+2}\right)$ وفق $D_f=]-\infty,-2[\cup]2,+\infty[$ خطّه البياني وليكن $f(x)=\ln\left(\frac{x-2}{x+2}\right)$

- . واستنتجي الصفة التناظرية لخطه البياني f فردي ، واستنتجي الصفة التناظرية لخطه البياني .
- . C_f المنايات التابع f عند أطراف مجموعة تعريفه واستنتجي كل مستقيم مقارب أفقي أو شاقولي للخط $oldsymbol{2}$
 - . D_f متزایدٌ تماماً علی کلِّ من مجالی f
 - . C_f ارسمي $\mathbf{4}$

.....انتهت الأسئلة

