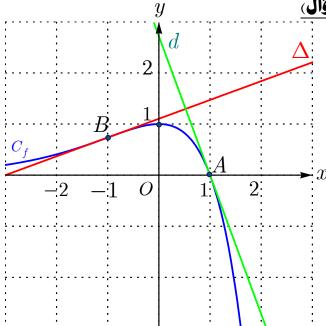
مذاكرة الفصل الثاني في مادة الرياضيات

للصف الثالث الثانوي العلمي (2018-2019)

أُولاً: أجيبي عن الأسئلة الأربعة الآتية: (40 درجة لكل سؤال)

السؤال الأول:

: التابع المعرّف على $\mathbb R$ وفق العلاقة


: ألمرسوم جانباً . $f(x) = (ax + b) \cdot e^x$

- b و a بالاستفادة من الشكل عيّني العددين الحقيقيين a
 - b = 1 و a = -1 بفرض

. $f(x) = (-x+1) \cdot e^x$: نحصل على التابع

B و A في النقطتين الخط و $C_{_f}$

اللتين فاصلتاهما 1 و 1 على الترتيب متعامدان .

(B (index)

الاسم :.....

الدرجة: 600

السؤال الثاني :

 $(x-\frac{1}{x^2})^{10}$ ما الحد الذي يحوي x^7 في منشور

 $: t \in \mathbb{R}$

وهل يوجد حد ثابت (الذي لا يتعلّق بالمتحوّل x) في المنشور السابق ؟

السؤال الثالث: أثبتي بالتدريج صحة الخاصة الآتية: « 3n > 1 - 3n مضاعف للعدد 9 > 1 أياً كان العدد الطبيعي n السؤال الرابع: المستقيمان n و n معرّفان وسيطياً وفق

 $\begin{cases} x = -1 \end{cases}$

 $L': \begin{cases} x = 4 - 5s \\ y = 3 - 2s \\ z = -1 + 2s \end{cases} : s \in \mathbb{R} \qquad \text{o} \qquad L: \begin{cases} x = -1 \\ y = 1 - t \\ z = 1 - 2t \end{cases}$

. أثبتي أنّ L و L' متقاطعان في نقطة يطلب تعيين إحداثياتها $oldsymbol{0}$

. L' و L وجدي معادلة المستوي المحدد بالمستقيمين

ثانياً : حلي التمارين الأربعة الآتية : (60 درجة لكل سؤال)

 $\frac{2}{5}$ التمرين الأول : أمام طالب سؤالين . احتمال أن يجيب عن السؤال الأول بصورة صحيحة

 $\frac{1}{3}$ وإذا أجاب عن السؤال الأول بصورة صحيحة فإنّ احتمال أن يجيب عن السؤال الثاني بصورة صحيحة يساوي

 $rac{1}{4}$ و إذا أجاب عن السؤال الأول بصورة خاطئة فإنّ احتمال أن يجيب عن السؤال الثاني بصورة خاطئة يساوي

نفترض A حدث « الإجابة عن السؤال الأول بصورة صحيحة » و B حدث «الإجابة عن السؤال الثاني بصورة صحيحة »

. $\mathbb{P}(A \cup B)$ حسبي $(B \mid B)$. $\mathbb{P}(B \mid B)$. $\mathbb{P}(B \mid B)$

 $u_{n+1} = \frac{9}{6-u}$ و $u_0 = 1$: التمرين الثاني : لتكن المنتالية $(u_n)_{n \geq 0}$ المعرّفة بالعلاقة التدريجية

- . $n \in \mathbb{N}$ أَيْاً تكن $0 < u_n < 3$ أَنا تكن التدريج أن التدري
- . أم تتوققي أنّ $(u_n)_{n\geq 0}$ متزايدة تماماً $u_{n+1} u_n = \frac{(3-u_n)^2}{6-u_n}$ متزايدة تماماً .
- لنعرف المتتالية عيّني أساسها وحدّها الأول $v_n = \frac{1}{u_n 3}$: فق العلاقة وحدّها الأول (v_n) عيني أساسها وحدّها الأول عرف المتتالية عيني أساسها وحدّها الأول

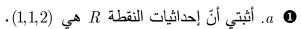
. $\lim_{n\to +\infty} u_n$ واحسبي عن n فيري عن n بدلالة n واحسبي ثمّ عبّري عن v_n بدلالة n

التمرين الثالث: صندوق يحوي 10 كرات. فيه 7 كرات بيضاء مرقّمة من 1 إلى 7

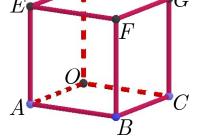
و 3 كرات سوداء مرقّمة من 1 إلى 3 . نسحب عشوائياً من الصندوق كرتين في آن معاً .

- ◘ إذا علمتِ أنّ الكرتين المسحوبتين من لونين مختلفين . ما احتمال أن يكون مجموع رقميهما فردياً ؟
 - 2 ما احتمال أن تكون الكرتان المسحوبتان من لونين مختلفين أو أن يكون مجموع رقميهما فردياً ؟

 $f(x)=e^{1-\cos x}$: وفق العلاقة $\mathbb R$ يكن f تابعاً معرّفاً على العلاقة وفق العلاقة :


. $\lim_{x\to 0} \frac{e^{1-\cos x}-1}{x}$ و f'(0) و f'(0) و f'(x)

واحسبي قيمة تقريبية لـ f(0.01) باستخدام التقريب التآلفي المحلي .


ثالثًا: حلى كلاً من المسألتين الآتيتين : (100 درجة لكل مسألة)

: المسألة الأولى P و P المسألة الأولى P مكتب طول ضلعه يساوي P مكتب طول ضلعه الماري P مكتب الماري P المسألة الأولى P المسألة المسألة الأولى P المسألة المسألة المسألة الأولى P المسألة ا

D (F,2) و $\overrightarrow{OQ}=4\overrightarrow{OC}$ ، ولتكن النقطة R مركز الأبعاد المتناسبة للنقطتين $\overrightarrow{OQ}=4\overrightarrow{OC}$ و $\overrightarrow{OQ}=2\overrightarrow{OA}$ و $\overrightarrow{OQ}=4\overrightarrow{OC}$ و $\overrightarrow{OQ}=4\overrightarrow{OC}$ و $\overrightarrow{OQ}=4\overrightarrow{OC}$ و النختر معلماً متجانساً $\overrightarrow{OQ}=4\overrightarrow{OC}$. $(O;\overrightarrow{OA},\overrightarrow{OC},\overrightarrow{OD})$

- . أثبتي أنّ النقاط P و Q و R لا تقع على استقامةٍ واحدة b
 - PQR ثمّ استنتجي نوع المثلّث $RP \cdot RQ$

- . (PQR) هي: QR هي QR هي QR ثمّ تحقّقي أنّ النقطة Q لا تنتمي إلى المستوي (QR) هي 4x + 2y + z 8 = 0
 - (DH) المسقط القائم للنقطة D على المستوي (PQR) على المستوي المستقيم H المستقيم H المستقيم H وأثبتي أنّها تنتمي إلى المستقيم H وأثبتي أنّها تنتمي إلى المستقيم H

المسألة الثانية :

. $f(x) = e^x - x - 1$ وفق $\mathbb R$ المعرف على المجال f المعرف لتابع الخط البياني للتابع

- . أوجدي نهايات التابع f عند أطراف مجموعة تعريفه
- . عادلته الخط d يقبل مستقيماً مقارباً مائلاً d يطلب إيجاد معادلته .
- . C و نظّمي جدولاً بها . ثمّ دلّي على قيمته الحدية محلياً مبيّنةً نوعها . ثمّ ارسمي f ادرسي تغيرات التابع
 - . \mathbb{R} عيّن تابعاً أصلياً للتابع f على 4

.....انتهت الأسئلة